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Abstract

Experiments and numerical computations have highlighted that heavy particles entrained in wall-
bounded (e.g. nonhomogeneous) turbulent flows tend to attain a nonuniform distribution in the normal-to-
the-wall direction, with higher concentrations near the wall. Recently, a Eulerian model for predicting
particle deposition rates that explains the experimental observations on the basis of turbophoretic force was
presented. This force causes particles to gain a net drift velocity down the gradients of turbulence inten-
sities. In this paper, we investigate the feasibility of the Eulerian approach for modeling the phenomenology
of turbulent dispersion in pipe flow with reflecting walls. Model predictions are compared with original
results obtained through direct numerical simulations (DNS) and Lagrangian particle tracking in a tur-
bulent pipe flow (Re = 4900). We show that the direct implementation of the model proposed recently tends
to overpredict concentration peaks at the pipe wall, a trend that had already been observed in the context of
deposition theory (perfectly absorbing wall). We propose a modified model for computing turbophoretic
drift velocity by providing an estimate for a term that was considered negligible in the original formulation
of the particle momentum balance equation. A better agreement (order of magnitude) between DNS results
and model predictions is found. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction and background

The physics of inertial particle dispersion by the action of a turbulent carrier flow is a phe-
nomenon of fundamental importance in a variety of contexts, ranging from transport of solid and
liquid pollutants in the atmosphere to industrially oriented applications such as the design and
optimization of multiphase reactors, deposition of solid particulate in combustion devices, and the
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precipitation of polymeric aggregates in oil pipelines. In cases where the loading fraction of the
dispersed phase is small, the theoretical and computational framing of the problem is simplified by
the so-called one-way coupling assumption based on the hypothesis that the dispersed phase does
not alter the fluid dynamics of the continuous phase. In this case, individual particle trajectories
can be determined a posteriori, once the flow field has been computed. This Lagrangian approach
to turbulent dispersion has been the object of intense computational and theoretical investigation,
starting in the early 1950s (see for example Yeung and Pope, 1989 and cited literature).

More recently, detailed descriptions of the fluctuating field of the carrier fluid obtained through
direct numerical simulation (DNS) techniques have made it possible to compute detailed statistics
of swarms of particles without recourse to turbulence modeling (see, for example, Uijttewaal and
Oliemans, 1996; Soldati et al., 1993; and cited literature).

Although these computational studies have undoubtedly contributed to clarifying the mecha-
nisms of convective transport in diluted multiphase turbulent flows, there is still a debate about
how to use the results obtained to derive a Eulerian description of particle motion, which is the
basis for designing optimal industrial processes.

On the other hand, the Eulerian advection—diffusion—equation (ADE) models that have been
proposed in the literature are not completely predictive in that they depend upon phenomeno-
logical constants that need to be estimated by experiment or costly simulation (Soldati et al., 1997;
Soldati, 2000).

While theories on how to link effective diffusivities to Lagrangian dispersion features of inertial
particles are available for homogeneous turbulence (Reeks, 1977), the situation is more compli-
cated in the presence of solid boundaries, which cause the intensity of turbulent velocity fluctu-
ations to be strongly dependent on the normal-to-the-wall coordinate (Caporaloni et al., 1975;
Reeks, 1983). This feature translates into an ADE whose transport parameters vary spatially, and
are therefore much more difficult to estimate.

A step forward towards bridging the Eulerian and Lagrangian approaches has been recently
made by Young and Leeming (1997) — hereon referred to as Y&L — who proposed a fully pre-
dictive model for particle dispersion in turbulent pipe flows in the context of deposition theory.
The model is based upon Reynolds averages of particle mass and momentum balance equations,
where particles are regarded as a continuous phase. Although mainly aimed at predicting depo-
sition rates as a function of particle size, the formal apparatus introduced by the Authors explains
many of the transport features that had been observed in both experiments and direct Lagrangian
simulations (Liu and Agarwal, 1974; Lee et al., 1989; Young and Hanratty, 1991; Brooke et al.,
1994).

In the phenomenon of particle dispersion in turbulent bounded flows, possibly, the most
striking observation is that heavy particles tend to be propelled away from the core and accu-
mulate at the pipe wall. This behavior has been recognized to be of utmost importance in
determining the particle deposition rate (Brooke et al., 1992, 1994).

In this work, we are interested in determining whether the aforementioned approach is able to
capture the physics of particle dispersion independently of the hypotheses that are specific to the
deposition model assumed by Y&L, where perfectly absorbing walls were considered. In partic-
ular, we assume that particles are elastically reflected away from the pipe wall. It should be noted
that perfect elastic reflection, i.e. where no dissipation occurs during the collision, is at the other
extreme with respect to the perfectly absorbing wall model, in which particle kinetic energy is
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completely lost during the collision. Real world cases are apt to fall somewhere between these
limiting situations.

From the Eulerian modeling standpoint, elastic reflection translates into a zero net flux of
particles at the wall (i.e. particles cannot cross the pipe wall), which acts as a boundary condition
in identifying the solution of the particles ADE.

2. DNS and Lagrangian particle tracking
2.1. DNS of the carrier fluid flow

In this work, we exploited a DNS database for computing concentration profiles of inertial
particles as they are transported by the turbulent carrier flow (hereon referred to as gas). The
Lagrangian particle tracking (see Section 2.2) is based upon the detailed knowledge of fluctuating
gas flow.

We simulated a turbulent pipe flow,with Re = UD/v, = 4900, where U is the average velocity,
D is the pipe diameter, and v, is the fluid kinematic viscosity. The DNS code is based on a finite
difference scheme and was developed by Orlandi and Fatica (1997). (For a comprehensive de-
scription of the numerical scheme as well as for the details of the code implementation, we refer
the reader to the book by Orlandi, 2000.) The code solves for Navier—Stokes equations in a cy-
lindrical domain (length L, radius R, coordinates 6,7,z) in the transformed variables
gro = 1, qr, = rv,, and gr, = v, (the subscript f stands for “fluid”’). Variables are made dimen-
sionless by using outer units (identified by the superscript ““-’), i.e. by taking the pipe radius and
the ratio t* = R/U as reference length and time units. Periodic boundary conditions at the inlet
and outlet sections are imposed while the average pressure drop along the pipe length is con-
tinuously updated to maintain the mass flowrate constant. No-slip and impermeability conditions
are imposed at the pipe wall.

The aspect ratio of the pipe was set to the value L/R = 10. This value ensures that correlations
along the axial direction decay practically to zero within half of the domain length. Spatial dis-
cretization was generated by introducing Ny x N, x N, = 65 x 65 x 65 subdivision points in the
intervals [0, 2x], [0, R], [0 : L] spanned by the independent variables 0,7 and z. Points were equally
spaced in the 0 and z directions, while a nonuniform discretization was used for the radial co-
ordinate, to obtain a finer grid next to the wall (Orlandi and Fatica, 1997). The initial condition
was a (perturbed) Poiseulle flow. Starting from this flow field, the solution was advanced through
a Runge—Kutta scheme with a time step Az~ = 0.01. This value, imposed by numerical stability
requirements (i.e. to maintain the Courant number below unity), is approximately equal to
10~21x, where 1x is the Kolmogorov time-scale of fluctuations (Monin and Yaglom, 1975).

The simulation was run until the statistics of both average axial velocity and RMS profiles of
azimuthal, radial and axial velocity fluctuations were found to be in agreement with those re-
ported in the literature (Eggels et al., 1994). This resulted in order 10° time-steps, corresponding to
t~ = 1000.

The instantaneous flow field at the final time of the simulation was saved and used as a restart
file for particle tracking simulations, which were run for 2 x 10 time-steps.
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2.2. Lagrangian particle tracking

Particle tracking simulations aimed to reproduce the physical situation of solid fly ashes
dragged by a turbulent (Re = 4900) flow of air within a 5 cm diameter vertical pipe. Particle and
gas densities were set to p, =1000 and p, =13 Kg/ m’, respectively, while a value
ve = 1.57 x 107> m?/s was assumed for the kinematic viscosity of the gas. Three values for par-
ticle diameter were considered, namely D, = 40; 70; 120u, which correspond to particle relaxation
time 7, = 4.5 x 107, 1.3 x 107%;3.9 x 107%;5, where 7, = p,D;/18p,v,.

The particle equations of motion were made dimensionless by using “+”” (wall) units, e.g. by
taking 6, = vg/u, and * = v,/u’ as reference length and time units. In these relationships, u, is the

friction velocity defined as u. = ,/t,/p,, where 1,, is the wall shear stress.

Owing to the geometry of the system, the particle equations of motion were written in trans-
formed variables. The independent variables were chosen as Qy = r0; r; z, while the dependent
variables were defined as gy = rvy, ¢, = rv,, and ¢, = v,. With this choice, the particle momentum
balance equation writes:
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where C; = Cy4/Cs is the ratio between the effective drag coefficient Cy = 24/Re,, + 0.44 and the
Stokesian drag coefficient Cs = 24/Re,, and the superscript “+” indicates that all variables are
made dimensionless with respect to wall units (inner units).

As the focus of the present work is to understand the physics of turbulent dispersion in the
most simplified setting, both Saffman and Basset forces have been neglected in writing Eq. (1).
Accordingly, only viscous drag has been considered in the Eulerian radial momentum balance
(Section 3.2) to derive the particle drift velocity. This is one advantage offered by DNS versus
experiments, namely the effect of each force term can be singled out and investigated sepa-
rately.

The choice of working with the transformed variables gy, ¢, and ¢. allows for a twofold sim-
plification: (i) it enables to bypass the problem that the value of vy, v, at the axis is undetermined
because of the numerical scheme used to solve the DNS simulation, and (ii) it reduces the stiffness
of the system at the pipe axis (» = 0) with respect to the canonical cylindrical coordinates. The
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nodal values of ¢4, g, and ¢. provided by the DNS code were interpolated by using a trilinear
interpolation scheme in cylindrical coordinates.

Eq. (1) was solved by using a fifth-order adaptive size Runge-Kutta scheme, assuming a time
piecewise constant velocity field of the gas phase. In other words, within each time interval of the
DNS simulation the gas flow field was considered ““frozen”. This approximation is justified by the
fact that the DNS time-step is much smaller than both the Kolmogorov time-scale of fluctuations
based on the volume-averaged viscous dissipation, tx, and the particle relaxation time (when
expressed in wall units it results in Az ~ [107* + 107'] ¢, depending on the value of particle
diameter).

From a practical standpoint, Lagrangian particle tracking was performed in parallel with the
DNS simulation. We assumed gravity coincident with the axis of the pipe with the mean flow
directed upward. The initial condition was generated by randomly distributing order 10° particles
within the flow domain and assigning to each particle an initial velocity equal to the average
velocity of the fluid at the particle initial position. Particles that came closer than half particle
diameter to the wall were reflected elastically. Particles that crossed the outlet section were as-
sumed to re-enter the inlet section instantaneously, in line with the periodic boundary condition of
the DNS simulation.

Starting from the uniform distribution, radial profiles of particle concentration were computed
at fixed intervals of time by subdividing the pipe into order 400 concentric cylindrical shells of
approximately equal volume and counting the fraction of particles that fell within each annular
volume, i.e. by averaging over the axial and azimuthal coordinates, z and 0, respectively.

Fig. 1 shows the instantaneous particle profiles for different particle diameters at time 1+ = 578,
corresponding to 10* integration time-steps. Concentration profiles are plotted as a function of the

100

10

Fig. 1. Instantaneous particle concentration profiles obtained through DNS-Lagrangian tracking at time ¢t = 580. The
profile are plotted against the wall coordinate y* defined by y* =R" —r". (@): D, =40u; (O): D, = T0u; (A):
D, = 120u.
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dimensionless distance from the wall, y© = Rt — r* (a logarithmic scale is used to expand the near
wall region). As can be observed, in all of the cases considered particles are nonuniformly dis-
tributed along the radial coordinate, the trend being more pronounced for larger particles. In
particular, the concentration profile appears to reach a maximum very close to the wall (* ~ 2)
and decrease to lower values towards the pipe axis. This behavior has been observed in both
experiments and simulations, almost regardless of the type of particle-wall interaction (more
specifically, particle-wall interaction can modify the profile in the near-wall region but does not
alter the fact that particles are propelled away from the pipe core region). The physical origin for
this behavior has been recognized in the nonuniformity of the gas velocity fluctuations along the
pipe radius. Heuristically, an inertial particle located in the core region is subject to higher values
of radial fluctuations. Although these fluctuations can occur in both radial directions (i.e. towards
or away from the wall), an instantaneous fluctuation towards the pipe wall moves the particle into
a region of lower fluctuation intensity, so that the particle is unlikely to be driven back to its
original position. This qualitative observation provided the basis for the development of the “free-
flight” theory of deposition and has been quantitatively derived by Y&L by considering the
Reynolds-averaged Eulerian particle momentum balance (see Section 3.2).

3. ADE approach
3.1. Continuum formulation of particles motion

The ADE approach to particle dispersion consists of regarding the particle phase as a con-
tinuum, and writing down the particle mass-conservation equation with respect to a fixed
(Eulerian) reference frame. Taking ¢ as the instantaneous value of particle concentration (i.e. the
mass of particles per unit volume), and v the (three-dimensional) Eulerian convective velocity,
particle mass balance writes:

Oc
P + V. (ve) =V - (ZpVe). (2)
The convective motion v is the consequence of the complex of surface and volume forces that act
on individual particles, such as the viscous drag imposed by the surrounding gas, which is in turn
a consequence of the different local velocities of gas and particle phase. The diffusive term ap-
pearing in the r.h.s. of Eq. (2) accounts for particle motion due to thermal fluctuations. In this
context, the total velocity vt of the particle phase is related to the convective velocity, v by

cvr =cv — 2,V (3)

which expresses the total mass flux of particles, j, = c vr, as the sum of a convective and a diffusive
contribution.

Eq. (2) is not very useful in that the instantaneous values of ¢ and v are in general fluctuating
and therefore not accessible to direct experimental measure. Accordingly, a time-averaging
(Reynolds averaging) is necessary in order to filter out turbulent fluctuations. This can be ac-
complished by writing the instantaneous values of ¢ and v as the sum of an average value and a
fluctuating term, i.c.
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c=C+c, v=V+VY, (4)

where the average is intended to be taken over by a time-interval long enough to smooth out
turbulent fluctuations but short enough to account for variations due to changes in boundary
conditions, or to a ““macroscopic’’ transient.

By introducing the notation in Eq. (4) and expanding Eq. (2) in cylindrical coordinates 0, r, z we
obtain

oc 120 10 oC 10/ _—

a—‘;a“m*;a{r@pﬂ‘;a(mﬁv )
where 0 and z dependencies have been neglected, consistently with the averaging of DNS-
Lagrangian tracking computed concentration profiles over the z and 0 coordinates (see previous
section). The presence of a net drift velocity ¥,(r) is a direct consequence of the embedding of
inertial particles in a flow whose turbulent fluctuation intensity is spatially nonhomogeneous. This
issue is extensively addressed in the next section. For the time being, we will merely remark that, in
order to recover the behavior of passive tracers in the limit of small particles, ¥, must converge
uniformly to zero as particle diameter decreases to zero.

The term £,0C/0r in Eq. (5) accounts for particle motion due to thermal fluctuations. Clearly,
7, must decrease to zero for increasing particle diameters. In order to close Eq. (5), the term
0(c’v)/or must be expressed in terms of averaged quantities. Following Y&L, we model this term
as . = Zy1,0C/0r — i.e. the Fickian form, — where the turbulent diffusivity P, is estimated
from the gas turbulent viscosity v, through the turbulent Schmidt number Scy, (here assumed
to be equal to one), i.e. Db = Vg urb/Scuurb- (the dependency of both &, and v, on particle
characteristics and gas fluctuation intensities is reported in Appendix A). With this assumption,
Eq. (5) becomes

oC 10 10 oC

E:—;a—r(l"l/,C)—F;a r(@p—{_@turb)g . (6)
From the structure of Eq. (6), it follows that the action of the carrier gas in determining the time
evolution of particle concentration emerges both in the turbulent diffusivity, %, and in the
radial drift velocity V.

Fig. 2 reports the profile of veumw/v, as a function of normal-to-the-wall coordinate,
yt =Rt —rt.

Therefore, for assigned boundary conditions, the solution of Eq. (6) is determined once a
suitable expression of V. as a function of particles parameters and of the radial position is known.
Consistently with the DNS-Lagrangian tracking simulation, the boundary conditions are specified
by

dc
5 |r:0 =0,
oc (7)
_cn+9turb_ = 0.
al" r=R
The second of Eq. (7) is the condition of zero net flux at the pipe wall. The first is the same zero
flux condition at the pipe axis, where the drift velocity is zero by symmetry.
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Fig. 2. Profile of the gas turbulent kinematic viscosity, g (normalized to the molecular kinematic viscosity, v,) as a
function of the normal-to-the-wall coordinate, y™.

The novelty introduced by Y&L was to derive information about the drift velocity ¥,(r) from
the Eulerian momentum balance of the dispersed phase, in which the action of the gas is ex-
plicitly accounted for. We refer the reader to the original paper for a description of the Rey-
nolds-averaging procedure in the generic three-dimensional framework. In the next Section,
only the Reynolds-averaged r-component of momentum balance is reported as the Eulerian
approach pursued in this article which aims to model the results of DNS-Lagrangian tracking
simulations.

Before analyzing this issue, we will conclude this section by noticing that the Boundary Value
Problem expressed by Eqgs. (5)—(7) allows for an explicit expression of the steady-state concen-
tration profile

C(r) = Cyexp UO % dul, (8)

where Cy = C(0) can be derived by enforcing fOR 2nrC(r) dr = M,,, M,, being the total mass of
particles. We notice that the integral in Eq. (8) is always convergent, because of the presence of
molecular diffusivity &, which makes the denominator bounded away from zero. However, the
values of &, for typical temperatures and particle diameters are very small whereas the term %,
is zero at the pipe wall. For this reason, the concentration profile is extremely sensitive to the
behavior of the drift velocity ¥,(r) in the near-wall region.

From Eq. (8), it is also readily seen that in cases where the drift velocity is uniformly zero, the
concentration profile tends towards uniformity, regardless of the fact that &, + Z(r) depend
on r. In other words, an ADE with variable diffusivity without a convective term cannot explain a
nonuniform steady-state profile.
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3.2. Momentum balance and turbophoresis

By using procedures analogous to those outlined in the previous section, and by considering
gravity directed along the z-axis (vertical pipe), we obtain the following form for the r component
of the momentum balance equation (see, e.g., Y&L for the details of the derivation):

oV, o4V, 00— v,—vV
_ . W] 00 rr
= — UV +—

4
or Tp or r

—vv-V(ln ¢), 9)
where v and c¢ are the instantaneous values of particle velocity and concentration, respectively (see
previous section) and @y is the drag coeflicient (here assumed to be equal to one). The contribution
of the Saffman lift force has been neglected. In deriving Eq. (9), a pseudo-steady-state assumption
has been made, namely that the profile of the drift velocity develops nearly instantaneously for
any given profile of particle concentration. This assumption is crucial in order to decouple mass
and momentum balance.

The last three terms in the right-hand side of Eq. (9) involve averages of fluctuating quantities,
which need to be modeled to close the equation. In Y&L, the last two terms were neglected, as the
main contribution to drift velocity was identified in the term involving the gradient d(v/v)/0r of
particle radial fluctuations (turbophoretic force).

In particular, the term v'v - V(In ¢) was dropped by assuming that large values of velocity are
always associated with small concentration gradients and vice versa.

However, results of DNS-Lagrangian tracking indicated that, in the presence of reflecting walls,
the value of concentration gradients can be very large (Fig. 1). Accordingly, we retain this term
and attempt an estimate based on physical arguments. First of all, we assume that
V(ln ¢) ~ V(In C), since at points where concentration reaches large values, concentration
fluctuations are relatively unimportant. Under this assumption, by expandingvasv =V + v/, and
neglecting the 0 and z components of the velocity we obtain

—————— _—_0InC
vv-V(ln ¢) ~ vl o

A form similar to Eq. (10) was also derived in (Zaichik, 1997) from the probability density
function equation describing the transport of particle in the phase space.

By enforcing the pseudo-steady-state hypotesis that was assumed in order to write the sta-
tionary r-momentum balance Eq. (9), one can compute the term O(In C)/0r from the steady-state
mass balance Eq. (8), thus obtaining

OlnC V.(r)

(10)

= . 11
al’ ‘9}) + @lul‘b (I") ( )
The final form of the momentum equation is then given by
ov, Dy v 0
I/r — _ —-d rer I/; o /‘ /‘. 12
or ( Tp + Dy + @mrb> or Ol (12)

As suggested in Y&L, the fluctuations of particle radial velocity are related to those of the gas by
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- T -

g
V= ———ulul 13
T e, (13)

where 1, = 1,(r) is a local persistence time of gas turbulent eddies, and u/u’ is the square of the
RMS radial velocity fluctuations of the gas (the models yielding the profiles of both quantities as a
function of y* are given in Appendix A). Fig. 3 shows the comparison between »/1/. and particles
fluctuations v/, for different particle diameters.

Once particle fluctuations have been modeled, one can solve Eq. (12) for the drift velocity V.
The initial condition ¥, (r = 0) = 0 is imposed by symmetry considerations. Eq. (12) is an Abel
equation (i.e. nonlinear) and does not yield an analytical solution. In this work, a fourth-order
Runge—Kutta scheme was used in order to obtain the numerical solution. Since the Runge—Kutta
scheme solves for the normal form of Eq. (12), the equation was solved in the transformed
variable z, defined as z = V?/2 for ¥, > 0, and z = —V?/2 for ¥, < 0.

Fig. 4 shows the comparison between the drift velocity profiles computed from Eq. (12) and
those obtained from the original formulation of the -momentum balance of Y&L (e.g. where the
term v'v - V(Inc) was neglected) for different particle diameters. For the range of particle diam-
eters considered, the magnitude of the velocity profile monotonically increases with particle di-
ameter (or particle relaxation time t,), meaning that larger particles are subject to higher drift
velocities. In all cases, the presence of the term of Egs. (10) and (11) lowers the velocity profiles of
corresponding particle diameters. In particular, we can notice that the value of 7, at the pipe wall
for the largest particles (D, = 120u) is rather different depending on the presence of the term
estimated in Eq. (10). As pointed out at the end of the previous section, the behavior of ¥, in the
near the wall region has a dramatic impact in determining the concentration profiles at long times.

0 = 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160
+

y

Fig. 3. Intensity of radial fluctuating velocity for the gas (u/*u/*) and the particles (v/7v/*) as a function of the wall
distance y*. All variables are expressed in wall units. (——): gas; (0): = 0.8 (Dp = 20p); (A): 7 = 3.1 (D = T0u);
(O): t; =28 (D, = 120p).
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Fig. 4. Profiles of the particle drift velocity for various particle diameters. (a) present model, (b) original momentum
balance as proposed by Young and Leeming. (x)- D, =40u (5 = 0.8); (x)- D, = 70p (rg =9.5); (+)- Dy = 120u
(ry = 28).

4. Results and discussion

Once the drift velocity ¥, is known, Eq. (5) constitutes a completely predictive model for the
time evolution of particle concentration. Owing to the variable coefficients that are involved, we
must resort to numerical integration in order to solve the boundary value problem specified by
Eqgs. (5)—(7). The steep gradients exhibited by the coefficients impose a finer discretization in the
near-wall region. For the numerical solution, we made Eq. (5) dimensionless by normalizing
variables with respect to wall (“+”’) units.

We used a finite-volume semi-implicit scheme (order 400 cells), where the (physical) volumes of
the annular sections were chosen to ensure nearuniformity. This leads to consider a subdvision of
the [0, R] interval into a nonuniform grid which is finer next to the pipe wall. The finite-volume
method adopted does not ensure mass conservation (mass conservation is indeed satisfied by the
fully explicit method, which, however, is too demanding in terms of time-step resolution). Spe-
cifically, mass was found to increase with time at a rate that depended upon the time-integration
step. We fixed a limit of one percent mass production at the final simulation time /* = 1156, which
resulted in a time step of the order A" =5 x 107%.

Fig. 5 shows the time evolution of the concentration profile for particle of diameter D, = 120u
(t, = 28), starting from an initial condition of umform particle concentration C(r*,0) = 1, cor-
responds to a total number of particles M, =1/ nR*". The profiles are taken at intervals of time
Art = 58, the total simulation time being 7+ = 1156 (this value corresponds to 2 x 10* simulation
time-steps). A logarithmic scale was chosen to observe the near-the-wall region in detail. The
profile develops a maximum, which shifts towards the wall at increasing times until it disappears
at the final time considered. Concentration within the core region decreases accordingly, as a net
flux of mass occurs towards the pipe wall. The development of a transient maximum can be
physically envisioned as a two-stage process characterized by different time-scales. Particles are
driven away from the core region by fast convective-diffusion mechanisms, accumulating close to
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Fig. 5. Transient behavior of concentration profiles for particles of diameter D, = 120u as a function of y*, obtained by
advancing the BVP Egs. (5)—(7) up to a time r* = 1156, starting from a flat profile C(y™, 0) = 0 as an initial condition. A
maximum in particle concentration profile develops as a consequence of the drift velocity profile profile of Fig. 4. The
case shown corresponds to the velocity obtained by solving the modified version of the momentum balance Eq. (12).

the wall, and are then slowly transported towards the pipe wall. Infact, this mechanism has been
hypothesized since the early pioneering works on particles deposition (Friedlander and Johnstone,
1954), and the present transient analysis provides support to this conjecture.

Next, we examined the comparison between the ADE model and the DNS simulations. In the
remainder, all of the cases shown report the ADE prediction for velocity profiles computed ac-
cording to the original model by Young and Leeming (1997), and the present model, i.e. where the
term —v/v’0 In C/0r has been added in the momentum balance equation. We refer to the first case
as Y&L, though it is important to emphasize that we are here considering a two-dimensional (z-
independent) reduction of the Authors’ model for convective velocity, and that we are solving the
mass balance ADE Eq. (5) with different boundary conditions at the pipe wall, where we impose
zero net flux.

Fig. 6 shows results for the case D, = 40u (r; = 3.1). At all times, the ADE solution corre-
sponding to the modified model of drift velocity compares better than the Y&L model with the
instantaneous particle concentration profiles obtained through direct Lagrangian tracking. For
this value of particle diameter, in both cases the ADE prediction tends to overestimate the
concentration peak. At the final time of the simulation, the error predicted by the ADE solution
corresponding to the drift velocity profile estimated with the proposed model is sensibly lower
than the profile predicted by adopting the Y&L momentum balance equation.

The comparison of model predictions changes dramatically when the particle diameter in-
creases. Fig. 7 shows the results of the same calculations for particle diameter D, = 70u. In this
case, the drift velocity profiles (Fig. 4) are already sensibly different. This difference presents in the
corresponding concentration profiles. The profile in the near-the-wall region is presently over-
predicted by the Y&L model and is underpredicted by the proposed model.
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Fig. 6. Comparison at different times of ADE models prediction vs. DNS-Lagrangian tracking simulations for
D, = 40u. (@): DNS; (A): present model; (O): Y&L. (a) t+ = 230; (b) t* = 350; (c) 1" = 580; (d) " = 1050.

The same trend can be observed for particles of diameter D, = 120. At the final time consid-
ered, the prediction error on concentration corresponding to the Y&L velocity profile is much
higher (orders of magnitude) than that obtained by considering our estimate for drift velocity
(note that the concentration scale is logarithmic). Infact, the velocity profiles (Fig. 4) in the near-
the-wall region are considerably different for this value of particle diameter.

A very important question arises as to whether the concentration profiles settle into a stationary
behavior, as predicted by the ADE approach (Eq. (8)). Clearly, this point is hard to establish
through DNS-Lagrangian tracking techniques since, even should a steady-state exist, the time-
scale for obtaining the time-independent behavior could be very long, owing to the low values of
drift velocity and turbulent diffusivity in the near-wall region (see Fig. 8).

In order to obtain insights into this point, we ran the DNS-tracking simulation for the
D, = 120 particles for a total dimensionless time #* = 2170, corresponding to order 3.8 x 10*
time-steps. We defined a convergence norm, I', as I' = ) . |c! — ¢?|/ >, ¢?, where ¢! and ¢! are the

i1
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Fig. 7. Comparison at different times of ADE model predictions vs. DNS-Lagrangian tracking simulations for
D, = 70u. (@): DNS; (A): present model; (O): Y&L. (a) t = 60; (b) t = 260; (c) " = 580; (d) " = 1050.

particle concentrations at the spatial locations R; at different times. Fig. 9 shows the behavior of I
corresponding to five time instants separated by 2.5 x 10° time steps. As an overall trend, I
appears to decrease with time, thus indicating that a steady state will be reached eventually (in this
condition I" should be identically zero).

Fig. 10 shows the comparison between the DNS particle concentration profile at the final
simulation time (* = 2170 with the ADE steady-state profiles obtained from Eq. (8). As can be
noticed, the Y&L estimate of drift velocity is reflected into a particle concentration profile that for
all practical purposes can be considered a Dirac’s delta centered at the pipe wall. The present
model for computing drift velocity provides instead a quantitative estimate for the DNS data,
though it still tends to underpredict concentration in the near-wall region.

Although the ADE model considered in this work must be solved numerically, memory and
CPU time requirements are considerably less demanding with respect to the DNS-Lagrangian
approach (in all of the cases presented the finite-volume solution of the ADE equation resulted in
a CPU time of order 102 the time required by the DNS simulation). Furthermore, the availability
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Fig. 8. Comparison at different times of ADE model predictions vs. DNS-Lagrangian tracking simulations for
D, = 120u. (e): DNS; (A): present model; squares: Y&L. (a) t* = 60; (b) " = 260; (c) t* = 580; (d) t* = 1050.

of a fully predictive Eulerian model enables us to gain quantitative insight into the mechanisms of
turbulent mixing and to estimate the time-scales at which different mechanisms dominate.

5. Conclusions

In this article, we have proposed a fully predictive Eulerian model for determining the spa-
tiotemporal distribution of inertial particles dispersed by a turbulent carrier flow. The model is
based upon the one proposed by Young and Leeming (1997). Our model is different in that we
include a term which was neglected in the original formulation. This term involves the product of
fluctuating concentration and radial velocity in the radial momentum balance equation (Eq. (10)),
and permits to improve by orders of magnitude of the prediction of particle concentration at the
wall.
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Fig. 10. Comparison of steady-state profiles predicted by the ADE models and the DNS computed profile at the final
simulation time #* = 2310.

The model proposed was validated through original simulations performed through DNS-
Lagrangian tracking technique for the case of heavy particles entrained in a turbulent (Re = 4900)
pipe flow with perfectly reflecting walls. The inclusion of the term neglected by Y&L was found to
be crucial in predicting the time-evolution of concentration profiles in the cases examined, es-
pecially for the largest (D, = 120u) particles. Beyond providing relatively inexpensive quantitative
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predictions, the Eulerian approach is also helpful in gaining insights into the mechanisms of
turbulent dispersion. The analysis of transient behavior highlighted that radial turbulent transport
is characterized by altogether different rates in the core of the pipe and at the wall layer. This
shows directly in the time-evolution of particle concentration profiles, which develop a transient
maximum near the pipe wall. The maximum moves towards the wall as time increases and
eventually disappears, thus yielding a monotonic steady-state profile. This phenomenon, predicted
by the Eulerian model, was also indicated by DNS-Lagrangian tracking simulations.

The approach proposed can also be generalized to include wall-particle interactions, which
may have a strong impact on practical situations. Indeed, short range forces exchanged between
particles and walls can be explicitly accounted for in the momentum balance equation, i.e. by
adding a corresponding term in the right-hand side of Eq. (12).
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Appendix A

We report in this appendix the models for both gas and particle fluctuation intensity as
proposed in Y&L. Dependencies are given as a function of the normal-to-the-wall coordinate,
Y*. For details, we refer the reader to the references given in Y&L.

A.1. Model of gas eddy viscosity

The gas eddy viscosity is given by a two-layer model that recovers its behavior in the near-wall
and and core regions of the pipe, vy, and v, respectively. The latter are given by

Vwt = K[l —exp( _yi/)“i)]v (Al)
where k¥ = 0.4 and A, = 24, and
0.2 2
Vey = Vou | 1.1 — — arctan y7+2 , (A.2)
T (R =)
being vy, = aU.. 0., with U, equal to the centerline velocity, « = 0.3 and
R, U
5, = / s (1 = )dm. (A.3)
0 R+ UZO+

The overall expression of Vg b/, 1S given by

Ve turb/ Ve = Vi tanh(vys /vei). (A.4)
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A.2. Model of gas fluctuation intensity

Using analogous symbolism, the gas fluctuation intensities are given by

(u;+u;+)l/2 = uc, tanh(uy, fuc.), (A.5)
where

Uy = 0.0373y,[1 —exp( — v, /4.67)], (A.6)
and

Uoy = 0.9 — ? arctan <yi/(RJr —y+)2>. (A7)
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